
Recap Monad List Monad Applicative FIN

Software System Design and Implementation

Lecture 6: Monads, Applicatives

Zoltan A. Kocsis
University of New South Wales

Term 2 2022

1

Recap Monad List Monad Applicative FIN

Kinds

Recall that terms in the type-level language of Haskell have kinds.
The most basic kind is written as *.

Types such as Int and Bool have kind *.

Since Maybe takes a type argument, it has kind * -> *; e.g.
given a type Int, it will return a type Maybe Int.

As we have seen, State has kind * -> * -> *.

2

Recap Monad List Monad Applicative FIN

Functor

Last time we looked at the Functor type class,
where f has kind * -> *.

class Functor f where

fmap :: (a -> b) -> f a -> f b

Functor Laws

1 fmap id x == x

2 fmap f (fmap g x) == fmap (f . g) x

We’ve seen instances for lists, Maybe, functions.

3

Recap Monad List Monad Applicative FIN

Monads

Last time we also defined our own State type using

type State s a = s -> (s,a)

and explored the following functions:

State

bindS :: State s a -> (a -> State s b) -> State s b

yield :: a -> State s a

Maybe

bindM :: Maybe a -> (a -> Maybe b) -> Maybe b

Just :: a -> Maybe a

These proved to be useful abstractions, reducing repetition in code,
eliminating classes of bugs. Today we’ll look at the Monad type
class, which abstracts the similarities between these two solutions.

4

Recap Monad List Monad Applicative FIN

Monads

The most commonly-used abstraction for kinds * -> * in Haskell
programming is the Monad.

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

The (>>=) operator is pronounced bind. Examples seen so far:

Maybe

State s for any type s

NB The standard library defines monads a bit differently: for the
actual definition see the section on Applicatives.

5

Recap Monad List Monad Applicative FIN

Monad Laws I

Usually, type classes come with laws. Monad is no exception.

Monad Law 1: η-associativity

Given f :: m a and g :: a -> m b, and h :: b -> m c,

(f >>= \x -> g x) >>= \y -> h y ==

f >>= (\x -> g x >>= \y -> h y)

Allows us to write unambiguously e.g.

use :: State Integer Integer

use =

get >>= \x ->

put (x + 1) >>= _ ->

return x

6

Recap Monad List Monad Applicative FIN

Monad Law II

As η-associativity governs >>=, so we have two laws governing
return.

Monad Law 2: return right identity

Given f :: m a,

f >>= \x -> return x ==

f

The other side is a bit more complicated.

Monad Law 3: return left identity

Given x :: a and f :: a -> m b,

return x >>= \y -> f y ==

f x

You’ll have to learn the three monad laws!

7

Recap Monad List Monad Applicative FIN

Kleisli Category
We can define a composition operator with (>>=):

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)

(f <=< g) x = g x >>= \gx -> f gx

Monad Laws Restated

f <=< (g <=< x) == (f <=< g) <=< x -- associativity

return <=< f == f -- left identity

f <=< return == f -- right identity

These look like the monoid laws. The difference is that in a
monoid, any two elements can be combined using the monoid
operation; here, two elements can be combined only if their types
check out (if they are composable). This sort of structure is called
a category in mathematics.
The category above is the Kleisli category of the monad. The
monad laws state that the Kleisli category is a category.

8

Recap Monad List Monad Applicative FIN

Do notation

In older versions of the Haskell language, working directly with the
monad functions wasquite unpleasant: it required a whole lot of
extra parentheses.
This is why Haskell has do notation.

do x <- f

rest becomes y >>= \x -> do rest

do f

rest
becomes f >>= _ -> do rest

I’ll try to use it as little as possible in this course, but you’ll see it
used in real-world Haskell very frequently.

9

Recap Monad List Monad Applicative FIN

Do notation example

Recall that we wrote

use :: State Integer Integer

use =

get >>= \x ->

put (x + 1) >>= _ ->

return x

Using do notation, we could instead write

use :: State Integer Integer

use = do

x <- get

put (x + 1)

return x

10

Recap Monad List Monad Applicative FIN

An unusual monad

We’ve worked out two examples of monads last time, Maybe and
State s. This time we study the standard monad structure on list
types, [].
Unusally, I’ll define the operations first, and explain how they work.
Then I’ll provide some motivating problems.
We’ll have to define two functions,

returnL :: a -> [a]

bindL :: [a] -> (a -> [b]) -> [b]

Demo: list monad operations

11

Recap Monad List Monad Applicative FIN

Motivation: enumeration

If you play pen-and-paper RPGs, you might see instructions like:

Dungeons, Dragons

On your character sheet, a damage roll is written like this: 2d6+3.
This means roll two six-sided dice, add their results, then add
another 3.

You might ask questions like: what’s the probability that I deal
more than 8 damage?
Recall that this probability is:

num. cases where I deal more than 8 dmg

num. all possible outcomes

The list monad allows you to get exact answers to questions like
these, by enumerating all the relevant cases and outcomes.
Demo: 2d6 list monad

12

Recap Monad List Monad Applicative FIN

Motivation: backtracking search

The list monad is also a powerful way of implementing
backtracking search. Examples where backtracking can be used to
solve puzzles or problems include:

Programming puzzles: eight queens

AI and generation in puzzle games: crosswords, sudoku, peg
solitaire.

Combinatorial optimization: knapsack problem, etc.

Common Divisors

Simple example: can the numbers 6, 21, 15, 3, 10 be arranged
in such a way that any two consecutive numbers have a common
divisor?

Demo: Backtracking

13

Recap Monad List Monad Applicative FIN

Unary Map

Consider the fmap function for Maybe:

maybeMap :: (a -> b) -> Maybe a -> Maybe b

maybeMap f Nothing = Nothing

maybeMap f (Just x) = Just (f x)

instance Functor Maybe where

fmap = maybeMap

This allows us to write e.g.

ghci> fmap (\x -> x + 2) (Just 3)

Just 5

but not

ghci> fmap (+) (Just 3) (Just 2)

error: The function 'fmap' is applied to three arguments,

but its type has only two.

14

Recap Monad List Monad Applicative FIN

Binary Map?

It would be useful to have maybeMap2 function:

maybeMap2 :: (a -> b -> c)

-> Maybe a -> Maybe b -> Maybe c

so that

*> maybeMap2 (+) (Just 3) (Just 2)

Just 5

*> maybeMap2 (+) Nothing (Just 2)

Nothing

But then, we might need a ternary version.

maybeMap3 :: (a -> b -> c -> d)

-> Maybe a -> Maybe b -> Maybe c -> Maybe d

Or even a 4-ary version, 5-ary, 6-ary. . .

This would quickly become impractical!

15

Recap Monad List Monad Applicative FIN

Using Functor

Using fmap gets us part of the way there:

ghci> :t fmap (+) (Just 3)

fmap (+) (Just 3) :: Maybe (Int -> Int)

But, now we have a function inside a Maybe.

We need a function to take:

A Maybe-wrapped fn Maybe (Int -> Int)

A Maybe-wrapped argument Maybe Int

And apply the function to the argument, giving us a result of type
Maybe Int.

16

Recap Monad List Monad Applicative FIN

Applicative

This is encapsulated by the Applicative type class:

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

This is a subclass of Functor: every Applicative has to be a
functor. Maybe is an instance, so we can use this:

ghci> fmap (+) (Just 3) <*> Just 2

Just 5

ghci> pure (+) <*> Just 3 <*> Just 2

Just 5

ghci> pure (+) <*> Nothing <*> Just 2

Nothing

17

Recap Monad List Monad Applicative FIN

Using Applicative

In general, we can take a regular function application:

f a b c d

And apply that function to Maybe (or other Applicative)
arguments using this pattern (where <*> is left-associative):

pure f <*> ma <*> mb <*> mc <*> md

18

Recap Monad List Monad Applicative FIN

Relationship to Functor

All law-abiding (see laws later) instances of Applicative are also
instances of Functor, by defining:

fmap f x = pure f <*> x

Usually fmap is written infix operator, <$>, which allows us to write

pure f <*> ma <*> mb <*> mc <*> md

as

f <$> ma <*> mb <*> mc <*> md

19

Recap Monad List Monad Applicative FIN

Relationship to Monad

All law-abiding instances of Monad are also instances of
Applicative, by defining:

pure = return

f <*> x =

f >>= \f' ->

x >>= \x' ->

return (f' x')

But many law-abiding instances of Applicative are not instances
of Monad!

20

Recap Monad List Monad Applicative FIN

Monads from Applicative

Since every Monad is an Applicative (but not vice versa!), the
Haskell standard library defines monads using

class Applicative m => Monad m where

(>>=) :: m a -> (a -> m b) -> m b

I.e. if you declare a Monad instance, you have to declare an
Applicative instance as well!
NB You can implement the function return too, but it is just an
alias for pure.

21

Recap Monad List Monad Applicative FIN

Applicative laws

-- Identity

pure id <*> v = v

-- Homomorphism

pure f <*> pure x = pure (f x)

-- Interchange

f <*> pure y = pure (\g -> g y) <*> f

-- Composition

pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

These laws are not as convenient as the Functor and Monad laws;
pay attention when defining instances!

22

Recap Monad List Monad Applicative FIN

FIN

1 Thanks!

2 The last quiz is due 23:59 Thursday, 14 July 2022.

3 The last exercise is due 09:10 Thursday, 14 June 2022.

23

	Recap
	

	Monad
	

	List Monad
	

	Applicative
	

	FIN
	

