Recap 000 Monad 000000 List Monad

Applicative

COMP3141 Software System Design and Implementation

Lecture 6: Monads, Applicatives

Zoltan A. Kocsis University of New South Wales Term 2 2022

Kinds

Recall that terms in the type-level language of Haskell have kinds. The most basic kind is written as *.

- Types such as Int and Bool have kind *.
- Since Maybe takes a type argument, it has kind * -> *; e.g. given a type Int, it will return a type Maybe Int.
- As we have seen, State has kind $* \rightarrow * \rightarrow *$.

Recap

000


```
Last time we looked at the Functor type class, where f has kind * \rightarrow *.
```

```
class Functor f where
  fmap :: (a -> b) -> f a -> f b
```

Functor Laws

fmap f (fmap g x) == fmap (f . g) x

We've seen instances for lists, Maybe, functions.

cap	Monad 000000	List Monad	Applicative	FIN o
		Monads		
I	Last time we also define	d our own State	e type using	
1	type <mark>State</mark> s a = s -	-> (s,a)		
â	and explored the followir	ng functions:		
	State			
1	bindS :: State s a -	-> (a -> State	e s b) -> <mark>State</mark> s b	
	yield :: a -> State	s a		
	Maybe			

bindM :: Maybe a -> (a -> Maybe b) -> Maybe b
Just :: a -> Maybe a

These proved to be useful abstractions, reducing repetition in code, eliminating classes of bugs. Today we'll look at the *Monad* type class, which abstracts the similarities between these two solutions.

Monads

The most commonly-used abstraction for kinds * -> * in Haskell programming is the Monad.

class Monad m where

return :: a -> m a

(>>=) :: m a \rightarrow (a \rightarrow m b) \rightarrow m b

The (>>=) operator is pronounced *bind*. Examples seen so far:

- Maybe
- State s for any type s

NB The standard library defines monads a bit differently: for the actual definition see the section on Applicatives.

Monad Laws I

Usually, type classes come with laws. Monad is no exception.

Monad Law 1: η -associativity Given f :: m a and g :: a -> m b, and h :: b -> m c, (f >>= $x \rightarrow g x$) >>= $y \rightarrow h y ==$ f >>= ($x \rightarrow g x \rightarrow g x \rightarrow y \rightarrow h y$)

Allows us to write unambiguously e.g.

use :: State Integer Integer
use =
 get >>= \x ->
 put (x + 1) >>= _ ->
 return x

Monad Law II

As η -associativity governs >>=, so we have two laws governing return.

```
Monad Law 2: return right identity
Given f :: m a,
f >>= \x -> return x ==
f
```

The other side is a bit more complicated.

```
Monad Law 3: return left identity
Given x :: a and f :: a -> m b,
return x >>= \y -> f y ==
f x
```

You'll have to learn the three monad laws!

Recap	Monad	List Monad	Applicative	FIN
000	000000	000	00000000	0

Kleisli Category

We can define a composition operator with (>>=):

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c) (f <=< g) x = g x >>= \gx -> f gx

Monad Laws Restated					
f <=< (g <=< x)	== (f	<=< g)	<=< x		associativity
return <=< f	== f				left identity
f <=< return	== f				right identity

These look like the monoid laws. The difference is that in a monoid, any two elements can be combined using the monoid operation; here, two elements can be combined only if their types check out (if they are *composable*). This sort of structure is called a *category* in mathematics.

The category above is the *Kleisli category* of the monad. The monad laws state that the Kleisli category is a category.

Recap	Monad	List Monad	Applicative	FIN
000	000000	000	00000000	0

Do notation

In older versions of the Haskell language, working directly with the monad functions wasquite unpleasant: it required a whole lot of extra parentheses.

This is why Haskell has do notation.

 $\begin{array}{ccc} \operatorname{do} x & <- f & \\ & \operatorname{rest} & & \\ \operatorname{do} f & \\ & \operatorname{rest} & & \\ \end{array} \quad \begin{array}{c} \mathsf{becomes} & f >>= \backslash_{-} \to \operatorname{do} \operatorname{rest} \\ \end{array}$

I'll try to use it as little as possible in this course, but you'll see it used in real-world Haskell very frequently.

Recap	Monad	List Monad	Applicative	FIN
000	00000	000	00000000	0

Do notation example

Recall that we wrote

```
use :: State Integer Integer
use =
  get                  >>= \x ->
  put (x + 1) >>= \_ ->
  return x
```

Using do notation, we could instead write

```
use :: State Integer Integer
use = do
  x <- get
  put (x + 1)
  return x
```

An unusual monad

We've worked out two examples of monads last time, Maybe and State s. This time we study the standard monad structure on list types, [].

Unusally, I'll define the operations first, and explain how they work. *Then* I'll provide some motivating problems.

We'll have to define two functions,

returnL :: a -> [a] bindL :: [a] -> (a -> [b]) -> [b]

Demo: list monad operations

Motivation: enumeration

If you play pen-and-paper RPGs, you might see instructions like:

Dungeons, Dragons

On your character sheet, a damage roll is written like this: 2d6+3. This means roll two six-sided dice, add their results, then add another 3.

You might ask questions like: *what's the probability that I deal more than 8 damage?* Recall that this probability is:

num. cases where I deal more than 8 $\ensuremath{\mathsf{dmg}}$

num. all possible outcomes

The list monad allows you to get exact answers to questions like these, by enumerating all the relevant cases and outcomes. **Demo: 2d6 list monad**

Motivation: backtracking search

The list monad is also a powerful way of implementing backtracking search. Examples where backtracking can be used to solve puzzles or problems include:

- Programming puzzles: eight queens
- Al and generation in puzzle games: crosswords, sudoku, peg solitaire.
- Combinatorial optimization: knapsack problem, etc.

Common Divisors

Simple example: can the numbers 6, 21, 15, 3, 10 be arranged in such a way that any two consecutive numbers have a common divisor?

Demo: Backtracking

Recap	Monad	List Monad	Applicative	FIN
000	000000	000	•00000000	0

Unary Map

```
Consider the fmap function for Maybe:
maybeMap :: (a -> b) -> Maybe a -> Maybe b
maybeMap f Nothing = Nothing
maybeMap f (Just x) = Just (f x)
instance Functor Maybe where
  fmap = maybeMap
This allows us to write e.g.
ghci> fmap (\x -> x + 2) (Just 3)
```

Just 5

but not

Recap	Monad	List Monad	Applicative	FIN
000	000000	000	00000000	0

Binary Map?

```
It would be useful to have maybeMap2 function:
maybeMap2 :: (a \rightarrow b \rightarrow c)
            -> Maybe a -> Maybe b -> Maybe c
so that
*> maybeMap2 (+) (Just 3) (Just 2)
Just 5
*> maybeMap2 (+) Nothing (Just 2)
Nothing
But then, we might need a ternary version.
maybeMap3 :: (a \rightarrow b \rightarrow c \rightarrow d)
            -> Maybe a -> Maybe b -> Maybe c -> Maybe d
Or even a 4-ary version, 5-ary, 6-ary...
```

This would quickly become impractical!

р	Monad	List Monad	Applicative	FIN
	000000	000	0000000	0

Using Functor

Using fmap gets us part of the way there: ghci> :t fmap (+) (Just 3)
fmap (+) (Just 3) :: Maybe (Int -> Int)
But, now we have a function inside a Maybe.

We need a function to take:

- A Maybe-wrapped fn Maybe (Int -> Int)
- A Maybe-wrapped argument Maybe Int

And apply the function to the argument, giving us a result of type Maybe Int.

000 000000 000 000 000 000 000 000 000	Recap	Monad	List Monad	Applicative	FIN
	000	000000	000	0000000	0

Applicative

This is encapsulated by the Applicative type class:

class Functor f => Applicative f where pure :: a -> f a (<*>) :: f (a -> b) -> f a -> f b

This is a subclass of Functor: every Applicative has to be a functor. Maybe is an instance, so we can use this:

```
ghci> fmap (+) (Just 3) <*> Just 2
Just 5
```

```
ghci> pure (+) <*> Just 3 <*> Just 2
Just 5
```

```
ghci> pure (+) <*> Nothing <*> Just 2
Nothing
```

Recap

Monad

List Monad

FIN O

Using Applicative

In general, we can take a regular function application:

fabcd

And apply that function to Maybe (or other Applicative) arguments using this pattern (where <*> is left-associative):

pure f <*> ma <*> mb <*> mc <*> md

Recap	Monad	List Monad	Applicative	FIN
000	000000	000	000000000	0

Relationship to Functor

All law-abiding (see laws later) instances of Applicative are also instances of Functor, by defining:

```
fmap f x = pure f <*> x
```

Usually fmap is written infix operator, <\$>, which allows us to write

pure f <*> ma <*> mb <*> mc <*> md

as

f <\$> ma <*> mb <*> mc <*> md

Relationship to Monad

All law-abiding instances of Monad are also instances of Applicative, by defining:

```
pure = return
f <*> x =
  f >>= \f' ->
  x >>= \x' ->
  return (f' x')
```

But many law-abiding instances of Applicative are *not* instances of Monad!

Monad

List Monad

Monads from Applicative

Since every Monad is an Applicative (but not vice versa!), the Haskell standard library defines monads using

class Applicative m => Monad m where

(>>=) :: m a \rightarrow (a \rightarrow m b) \rightarrow m b

I.e. if you declare a Monad instance, you have to declare an Applicative instance as well!

NB You can implement the function return too, but it is just an alias for pure.

Recap	Monad	List Monad	Applicative	FIN
000	000000	000	00000000	0

Applicative laws

- -- Identity pure id <*> v = v
- -- Homomorphism pure f <*> pure x = pure (f x)
- -- Interchange
 f <*> pure y = pure (\g -> g y) <*> f

-- Composition

pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

These laws are not as convenient as the Functor and Monad laws; pay attention when defining instances!

Thanks!

- The last quiz is due 23:59 Thursday, 14 July 2022.
- The last exercise is due 09:10 Thursday, 14 June 2022.