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Kinds

Recall that terms in the type-level language of Haskell have kinds.
The most basic kind is written as *.

Types such as Int and Bool have kind *.

Since Maybe takes a type argument, it has kind * -> *; e.g.
given a type Int, it will return a type Maybe Int.

As we have seen, State has kind * -> * -> *.
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Functor

Last time we looked at the Functor type class,
where f has kind * -> *.

class Functor f where

fmap :: (a -> b) -> f a -> f b

Functor Laws

1 fmap id x == x

2 fmap f (fmap g x) == fmap (f . g) x

We’ve seen instances for lists, Maybe, functions.
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Monads

Last time we also defined our own State type using

type State s a = s -> (s,a)

and explored the following functions:

State

bindS :: State s a -> (a -> State s b) -> State s b

yield :: a -> State s a

Maybe

bindM :: Maybe a -> (a -> Maybe b) -> Maybe b

Just :: a -> Maybe a

These proved to be useful abstractions, reducing repetition in code,
eliminating classes of bugs. Today we’ll look at the Monad type
class, which abstracts the similarities between these two solutions.
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Monads

The most commonly-used abstraction for kinds * -> * in Haskell
programming is the Monad.

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

The (>>=) operator is pronounced bind. Examples seen so far:

Maybe

State s for any type s

NB The standard library defines monads a bit differently: for the
actual definition see the section on Applicatives.
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Monad Laws I

Usually, type classes come with laws. Monad is no exception.

Monad Law 1: η-associativity

Given f :: m a and g :: a -> m b, and h :: b -> m c,

(f >>= \x -> g x) >>= \y -> h y ==

f >>= (\x -> g x >>= \y -> h y)

Allows us to write unambiguously e.g.

use :: State Integer Integer

use =

get >>= \x ->

put (x + 1) >>= \_ ->

return x
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Monad Law II

As η-associativity governs >>=, so we have two laws governing
return.

Monad Law 2: return right identity

Given f :: m a,

f >>= \x -> return x ==

f

The other side is a bit more complicated.

Monad Law 3: return left identity

Given x :: a and f :: a -> m b,

return x >>= \y -> f y ==

f x

You’ll have to learn the three monad laws!
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Kleisli Category
We can define a composition operator with (>>=):

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)

(f <=< g) x = g x >>= \gx -> f gx

Monad Laws Restated

f <=< (g <=< x) == (f <=< g) <=< x -- associativity

return <=< f == f -- left identity

f <=< return == f -- right identity

These look like the monoid laws. The difference is that in a
monoid, any two elements can be combined using the monoid
operation; here, two elements can be combined only if their types
check out (if they are composable). This sort of structure is called
a category in mathematics.
The category above is the Kleisli category of the monad. The
monad laws state that the Kleisli category is a category.
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Do notation

In older versions of the Haskell language, working directly with the
monad functions wasquite unpleasant: it required a whole lot of
extra parentheses.
This is why Haskell has do notation.

do x <- f

rest becomes y >>= \x -> do rest

do f

rest
becomes f >>= \_ -> do rest

I’ll try to use it as little as possible in this course, but you’ll see it
used in real-world Haskell very frequently.

9



Recap Monad List Monad Applicative FIN

Do notation example

Recall that we wrote

use :: State Integer Integer

use =

get >>= \x ->

put (x + 1) >>= \_ ->

return x

Using do notation, we could instead write

use :: State Integer Integer

use = do

x <- get

put (x + 1)

return x
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An unusual monad

We’ve worked out two examples of monads last time, Maybe and
State s. This time we study the standard monad structure on list
types, [].
Unusally, I’ll define the operations first, and explain how they work.
Then I’ll provide some motivating problems.
We’ll have to define two functions,

returnL :: a -> [a]

bindL :: [a] -> (a -> [b]) -> [b]

Demo: list monad operations
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Motivation: enumeration

If you play pen-and-paper RPGs, you might see instructions like:

Dungeons, Dragons

On your character sheet, a damage roll is written like this: 2d6+3.
This means roll two six-sided dice, add their results, then add
another 3.

You might ask questions like: what’s the probability that I deal
more than 8 damage?
Recall that this probability is:

num. cases where I deal more than 8 dmg

num. all possible outcomes

The list monad allows you to get exact answers to questions like
these, by enumerating all the relevant cases and outcomes.
Demo: 2d6 list monad
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Motivation: backtracking search

The list monad is also a powerful way of implementing
backtracking search. Examples where backtracking can be used to
solve puzzles or problems include:

Programming puzzles: eight queens

AI and generation in puzzle games: crosswords, sudoku, peg
solitaire.

Combinatorial optimization: knapsack problem, etc.

Common Divisors

Simple example: can the numbers 6, 21, 15, 3, 10 be arranged
in such a way that any two consecutive numbers have a common
divisor?

Demo: Backtracking
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Unary Map

Consider the fmap function for Maybe:

maybeMap :: (a -> b) -> Maybe a -> Maybe b

maybeMap f Nothing = Nothing

maybeMap f (Just x) = Just (f x)

instance Functor Maybe where

fmap = maybeMap

This allows us to write e.g.

ghci> fmap (\x -> x + 2) (Just 3)

Just 5

but not

ghci> fmap (+) (Just 3) (Just 2)

error: The function 'fmap' is applied to three arguments,

but its type has only two.
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Binary Map?

It would be useful to have maybeMap2 function:

maybeMap2 :: (a -> b -> c)

-> Maybe a -> Maybe b -> Maybe c

so that

*> maybeMap2 (+) (Just 3) (Just 2)

Just 5

*> maybeMap2 (+) Nothing (Just 2)

Nothing

But then, we might need a ternary version.

maybeMap3 :: (a -> b -> c -> d)

-> Maybe a -> Maybe b -> Maybe c -> Maybe d

Or even a 4-ary version, 5-ary, 6-ary. . .

This would quickly become impractical!
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Using Functor

Using fmap gets us part of the way there:

ghci> :t fmap (+) (Just 3)

fmap (+) (Just 3) :: Maybe (Int -> Int)

But, now we have a function inside a Maybe.

We need a function to take:

A Maybe-wrapped fn Maybe (Int -> Int)

A Maybe-wrapped argument Maybe Int

And apply the function to the argument, giving us a result of type
Maybe Int.
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Applicative

This is encapsulated by the Applicative type class:

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

This is a subclass of Functor: every Applicative has to be a
functor. Maybe is an instance, so we can use this:

ghci> fmap (+) (Just 3) <*> Just 2

Just 5

ghci> pure (+) <*> Just 3 <*> Just 2

Just 5

ghci> pure (+) <*> Nothing <*> Just 2

Nothing
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Using Applicative

In general, we can take a regular function application:

f a b c d

And apply that function to Maybe (or other Applicative)
arguments using this pattern (where <*> is left-associative):

pure f <*> ma <*> mb <*> mc <*> md
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Relationship to Functor

All law-abiding (see laws later) instances of Applicative are also
instances of Functor, by defining:

fmap f x = pure f <*> x

Usually fmap is written infix operator, <$>, which allows us to write

pure f <*> ma <*> mb <*> mc <*> md

as

f <$> ma <*> mb <*> mc <*> md
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Relationship to Monad

All law-abiding instances of Monad are also instances of
Applicative, by defining:

pure = return

f <*> x =

f >>= \f' ->

x >>= \x' ->

return (f' x')

But many law-abiding instances of Applicative are not instances
of Monad!
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Monads from Applicative

Since every Monad is an Applicative (but not vice versa!), the
Haskell standard library defines monads using

class Applicative m => Monad m where

(>>=) :: m a -> (a -> m b) -> m b

I.e. if you declare a Monad instance, you have to declare an
Applicative instance as well!
NB You can implement the function return too, but it is just an
alias for pure.
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Applicative laws

-- Identity

pure id <*> v = v

-- Homomorphism

pure f <*> pure x = pure (f x)

-- Interchange

f <*> pure y = pure (\g -> g y) <*> f

-- Composition

pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

These laws are not as convenient as the Functor and Monad laws;
pay attention when defining instances!
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FIN

1 Thanks!

2 The last quiz is due 23:59 Thursday, 14 July 2022.

3 The last exercise is due 09:10 Thursday, 14 June 2022.
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